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HYDRODYNAMIC THEORY OF ATOMIC MIXING

IN MULTICOMPONENT GASES AND PLASMAS *

J. D. Ramshaw

ABSTRACT

Atomic mixing in multicomponent gases and plasmas is usually described as a diffu-
sional process. The diffusional description is an approximation to a more general dynamical
description in which the motion of each individual species or material is governed by its
own momentum equation, with appropriate coupling terms to represent the exchange of
momentum between different species. These equations are not new, but they are scattered
in the literature. Here we summarize the form of these species momentum equations, and
the coupling coefficients therein, in sufficient detail to facilitate their inclusion and use to
simulate atomic mixing in hydrodynamics codes.

*This work was performed under the auspices of the U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



1. INTRODUCTION

The dynamics of multicomponent gases and plasmas is usually described in terms

of momentum and energy transport equations for the fluid mixture as a whole, continuity

equations for each species or component in the mixture, and constitutive relations for the

fluxes of momentum, energy, and species masses due to molecular collisions. These constitu-

tive relations are ordinarily diffusional in character. For such a description to be valid, the

collisional transfer of momentum and/or energy between the different species must be fast

relative to time scales of interest. When this condition is not satisfied, it becomes necessary

to use a more general description in which each species has its own momentum and/or energy

transport equation. The conventional diffusional description of species transport is simply

an approximation to these individual species momentum equations [1,2].

In order to simulate the atomic mixing of materials in fast processes where the dif-

fusion approximation is not valid, it is necessary to solve the individual species momentum

equations. This in turn requires the evaluation of the various coupling terms and coefficients

therein. These equations are not new, but they are scattered in the literature. Our purpose

here is to facilitate their future use and application by gathering them together and sum-

. marizing them in sufficient detail and completeness to serve as a guide or blueprint for their

incorporation into hydrodynamics codes. All equations are written in cgs units.

In their most general form, the species momentum equations allow each species to

have its own temperature [1]. However, this degree of generality is rarely required, and the

present discussion will be restricted to partially ionized multicomponent plasmas containing

neutral atoms (or molecules), ions, and free electrons, in which all the heavy-particle species
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have the same common temperature T, while the electrons may have a different temperature

Te. Neutral gases containing no free electrons or ions are simply a special case. The plasma

is assumed to be unmagnetized and electrically neutral, so magnetic field effects [2] will be

neglected. However, a spontaneous electric field E will nevertheless arise to preserve local

charge neutrality, and it is essential to include the resulting electrical forces in the momen-

tum equations for the charged species.

2. SPECIES CONTINUITY EQUATIONS AND MASS FLUXES

In the absence of chemical reactions or other mass exchange between species, the

continuity or mass conservation equation for species i is simply

O fli
0---( + V . (piui) = (i)

where pi and and ui are respectively the partial mass density and mean velocity of species

i. Summing over i gives the total continuity equation for the mixture:

Op
0--7 + V-(pu) = (2)

where p -= F,i pi is the total mass density of the mixture, u = ~i yiui is the mass-weighted

mean fluid velocity, and yi = Pi/P is the mass fraction of species i. Equation (1) is usually

written in the form

Opi
0---t- + V. (p,u) = - V. (3)
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where Ji = piwi and wl = ui - u. The number density of species i is denoted by ni = pi/mi,

where mi is the mass of a single particle of species i.

The total charge density in the plasma is pq = ~i Piqi, where qi is the charge per unit

mass of species i. An evolution equation for pq may be derived by multiplying Eq. (1) by 

and summing over i to obtain

Opq
Ot + V-Jq = 0 (4)

where Jq = ~i piqiui is the electrical current density. This is simply the usual charge conser-

vation equation, which is also implied by Maxwell’s equations. Since it is a linear combination

of the continuity equations for the charged species, it can be used to replace any one of those

equations, in particular that for the free electrons. In the present context, however, it is

unnecessary to actually solve this equation, because our restriction to electrically neutral

plasmas implies that pq = 0, so that

1 Ev qJ
(5)Pe --

qe j#e

where the species index i = e refers to the free electrons. This equation determines the elec-

tron mass density pe and number density ne = p~/me in terms of the heavy-particle species

densities. It is therefore unnecessary to explicitly solve Eq. (1) for i = e, so this equation 

not needed and can be ignored. We therefore retain Eq. (1) only for i ~ 
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3. SPECIES MOMENTUM EQUATIONS

Neglecting viscous stresses, the momentum equation for species i takes the form [1]

O(piui)
Ot

+ V. (p u ui) = - Vpi + piFi + Fii
J

(6)

where Pi is the partial pressure of species i, Fi is the external body force per unit mass acting

on species i, and Fij = -Fji is the mean force per unit volume of species j on species i. In

the present context the only body forces are gravity and the electric forces on the charged

species, so that [2,3]

Fi = g + qiE (7)

where g is the acceleration of gravity. The species interaction forces are of the form [1]

Fij = aij(uj - ui) + flijV lnTj - fljiV lnTi (8)

where aij = aji, and Ti = T if/~ e. The form ofaij and flij will be given in the next section.

Although we will not make use of the diffusion approximation here, we note in passing that

the binary diffusivities for species pairs are simply related to the friction coefficients by

Dij = pipj/(paij), where p = ~iPi is the total pressure [1].

The free electrons are much lighter, than the other species, and they consequently

respond to and equilibrate with the various forces much more quickly than the heavy particles

do. This occurs on very short time scales associated with the small value of me. If the

equations were solved using an explicit numerical scheme, these short electron time scales

would present unacceptable stability and/or accuracy restrictions on the time step. These
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restrictions can be analytically circumvented by systematically neglecting terms of order

and me in Eq. (6), which also simplifies the equations. For this purpose we need to know

the orders of magnitude of various quantities in terms of me, in particular: Pe = mene ,’~ me,

qe m-1
e , ceje "~ ~ [2], and/3ej <</3je [4]. Neglecting terms of order ~ and higher in

the electron momentum equation, we then obtain

which now replaces Eq. (6) for i = e. This equation explicitly determines E, but it does not

determine the electron velocity u~. However, the neutrality condition pq -- 0 implies that

V ¯ Jq = 0, and we shall in fact assume the stronger "ambipolar" condition Jq = 0, which

also follows from Ampere’s law in the MHD approximation [2,3]. This then implies that

Peqeue = - ~_, pjqjuj (10)
ice

which determines u~ in terms of the velocities of the heavy species.

For consistency we also neglect terms of order ~ and higher in the heavy-particle

momentum equations, which then become

O(piUi)

Ot
+ V" (piuiui) = - Vpi + Pi(g + qiE) +~ ~ aij(uj ui )

j¢i,e

+[.jCi,e[E(fliJ-fl’i)]VlnT+flieVlnTe
(11)

where i ~ e. The net result of these simplifications is that the continuity and momentum



Eqs. (1) and (11) need only be solved for i -~ e, with E given by Eq. (9), while pe and 

determined by Eqs. (5) and (10), respectively.

4. THE COUPLING COEFFICIENTS

We must now define the coefficients aij and t3ij, which is unfortunately a rather

tedious proposition. Equation (11) shows that we need both these coefficients for all heavy-

species pairs, as well as the coefficients fli~ for all heavy species i. In what follows it will be

understood that the subscripts i and j both refer to heavy species. The central quantity

required to compute both aij and flq is a collision integral denoted by i2~1)(1, T) [5,6], 

terms of which [1,4]

aij = (16/3)ninj#ijt2~)(1, 

~ij = -(16/3)(rj/m~.)#~jninjksT2Ofl~)(1, 

(12)

(la)

where kB is Boltzmann’s constant, #ij = mimj/(mi W mj), and the collision time ri is given

by [4]
-1

where the cross-sections aij are given by

(14)

’(2r#ij~ 1/2 t2}))(1, 
(15)aij = \ kBT 

These cross-sections differ by a factor of 3/4 from the average momentum transfer cross-
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sections previously employed [4]. The definition of Eq. (15) now seems preferable, as 

properly reduces to the correct geometrical cross-sections for hard spheres [1].

The collision integrals f~l)(1, T) for neutral pairs are obtained from a standard func-

tional fit in terms of the Lennard-Jones parameters a/and ei for species i [7],

( kBT ~ 1/2~.(kBT/eij) (16)a~J)(1, T) aq\2n#ij/

O" 2where aq (r/4)(ai + j) ei j= ~, anda*(x) = x - 0" 145 -{- 4(1 -}- 2X)-2. The coll ision

integrals for charged species pairs are given by [5,6,8-10]

7/. ~ 1/2
~)(1, T) = -- (QiQJ)2 ln(1 + Ai~)1/2

k#ij] (2ksT)a/2 (17)

where Q, = rn, qi is the charge on a single particle of species i, A,j = 3kBTb°j/lQiQjl, and b,°

is the maximum allowed impact parameter for Coulomb collisions of an ij pair. The use of

such a cutoff is an inherently approximate procedure, and there is some uncertainty about

the appropriate choice of bi ° [6]. Nowadays it is customary to identify bi° with the Debye

length AD, but this is sensible only when the latter is much larger than the mean interparticle

spacing for species pair ij, which may be estimated as ~ij = [max(hi, n j)] -I/a. We therefore

let bi° = max(AD, rij).

There is some further uncertainty as to the appropriate Debye length to use for this

purpose. The obvious choice is the full multicomponent Debye length given by [8]

1 (neQ2e niQ2~-1/2

AD -- 2X/-ff \ kBT~ + Ei#e ~BT ] (18)
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However, the present equations are primarily intended for use in fast dynamical problems

with short time scales, where one intuitively feels that Debye shielding will be mainly due to

the electrons [11]. This suggests that the shielding due to ions should be neglected, which

can be done by omitting the ion terms in Eq. (18) to obtain

= ( kBTe ~t/2Ao \4~neQ~] (19)

Moreover, the essential effect of electron shielding is that an ion of species i viewed from

a distance r appears to have a reduced effective charge of Qi exp(--r/AD). On this basis,

one might further argue that the the effective interaction potential between two such ions

is thereby reduced by a factor exp(--2r/AD), so that a factor of 1/2 should be inserted into

the right member of Eq. (19) for present purposes. These ambiguities are troublesome and

unsatisfactory, but fortunately they occur in the argument of a logarithm and consequently

correspond to a relatively minor uncertainty in the value of Fill)(1, T).

The collision integrals for charged-neutral species pairs interacting via a pair potential

¢ij= -(1/2)(Q2ap)o/r4j are given by [5,6]

a~J)(1, T) 0.703 [(Q2aP)iJ]1/2= -- (20)
L #~J J

where (Q2ap)ij is the polarizability of the neutral species times the square of the charge on

the charged species. However, use of Eq. (20) is tantamount to assuming that the collision

integrals for charged-neutral pairs are dominated by the asymptotic long-range attractive

part of the interparticle potential rather than the short-range repulsive part, and this seems



questionable. It might therefore be preferable to simply approximate the collision integrals

for such pairs by the hard-sphere formula f~l)(1, T) R2j(TrksT/2#ij) 1/2 instead, where R/j

is some reasonable estimate of the distance of closest approach of an ij pair.

Finally, the thermal coupling coefficients ~/e are given by [4]

(21)

where Zi = Qi/Qe, he2 = E3¢~ n~Z], and we have neglected a summation over neutral

species which is generally expected to be small [4]. Note that flie vanishes for neutral

molecules in this approximation [4].

5. MODIFICATIONS TO THE HYDRODYNAMIC EQUATIONS

The relative motion of the different species or materials in the mixture gives rise to

certain additional terms in the momentum and energy transport equations for the mixture as

a whole [12]. If it is desired to implement the present equations into existing hydrodynamics

codes, these additional terms should be introduced into the existing momentum and energy

¯ equations that such codes already contain.

The relative species motion gives rise to an additional stress tensor of the form [12]

R = - ~ piwiwi (22)
i

which must be introduced into both the momentum equation and the work terms in the

energy equation. In the momentum equation, this additional stress is formally equivalent to

10



an additional body force per unit volume of V ̄  R.

The relative species motion also introduces additional heat fluxes into the energy

equation, namely [12]

1
Jq = ~. ~lwi[2Ji (23)

J,, = ~ hiJ, (24)
i

where hi = ei + Pi/Pi is the specific thermal enthalpy of species i. These heat fluxes are

formally equivalent to an energy source per unit volume per unit time of - V. (Jq + Jh).

The relative species motion further implies an additional kinetic energy per unit

volume of pq, where [12]

q= ~ lyilwil2 (25)

However, it is essential to note that this energy is not contained in the mixture kinetic energy

density l p u 2, so it effectively constitutes a second non-thermal type of internal energy. The

total energy per unit mass of the mixture (exclusive of gravitational or electromagnetic field

energy) is consequently given by [12]

E = ~lulz + q -4- e (26)

where e is the specific thermal internal energy per unit mass, which of course is the energy

that enters into thermodynamic state relations. It follows that in existing computer codes
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where the specific internal energy is defined in the usual way, namely

E = E - lul2 (27)

it now becomes necessary to reinterpret this energy as e + q, so that q must be subtracted

from e to obtain the purely thermal internal energy e required for thermodynamic state

equation purposes.

Most of the above modifications become unnecessary if it is assumed that the rela-

tive species velocities wi are sufficiently small that terms of order [wi[ 2 may be neglected.

Indeed, the only surviving modification under that assumption is the additional heat flux

Jh in the energy equation. Unfortunately, the validity of this approximation will rarely be

obvious a priori, so it would be unwise to adopt it as a general procedure, except perhaps

on a provisional basis pending later verification.

6. NUMERICAL CONSIDERATIONS

6.1. Consistency with Total Momentum

If it is desired to implement the present equations into existing hydrodynamics codes,

we must consider how to deal with the existingmomentum equations that such codes already

contain. We can of course sum Eq. (6) over i to obtain an evolution equation for the total

momentum density pu = ~i piui, but the result may not be fully consistent with the pre-

existing momentum equation in the code for several reasons, including (a) our neglect 

terms of order ~ and higher, (b) our neglect of viscous terms in the species momentum
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equations, and (c) any differences between the numerical scheme used to solve the species

momentum equations and that used to solve the total momentum equation in the code.

In principle it would be desirable to eliminate all such inconsistencies, but in practice this

may not always be feasible. In such cases, the species velocities computed by Eqs. (10)

and ill) should be suitably corrected to force them to be consistent with the mean fluid

velocity u computed by the existing momentum equation already in the code. This can be

done by means of a procedure originally developed to repair inconsistent.diffusion fluxes [13].

0Let the uncorrected species velocities computed by Eqs. (10) and (11) be denoted i.

These velocities are then immediately replaced, on every time step, by the corrected species

velocities

o yjuo (2s)Ui ~- U--~Ui --
J

These corrected velocities now obey the constraint ~i piui -- pu as they should, which in

turn ensures that the total density p = ~:i pi computed by Eqs. (1) and (5) will automatically

be consistent (within roundoff error) with that produced by the existing continuity equation

already in the code, provided of course that Eq. (1) is solved by the same temporal and spatial

difference scheme. The correction procedure of Eq. (28) is equivalent to using Eqs. (10) 

¯(11) to determine the relative species velocities only, while u is obtained from the existing

momentum equation already in the code [13]. It is easy to verify that the resulting corrected

species velocities still satisfy Eq. (10).

An alternative way to ensure consistency between the species velocities ui and the

mass-weighted mean velocity u is to algebraically convert Eqs. (10) and ill) into evolution

equations for wi rather than ui. This has two advantages: (a) it directly computes the
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quantity which is most often needed, and (b) it avoids the loss of significant figures that

would occur in computing small values of wi by subtracting nearly equal values of ui and u.

In places where ui itself is required, it may simply be evaluated as u+wi. The disadvantages

are that (a) wi is less closely related to a conserved quantity than ui, and (b) the evolution

equation for wi is slightly more complicated than that for ui.

The conversion of Eqs. (10) and (11) into evolution equations for wi is straightforward

but tedious, with the final results

peqew~ = -- ~ p~qjw3

P~ Dt

ice
Dwi

-- Vpi + yiVp + piqiE - piwi ¯ 7(wi + u) yi V ¯ R

+ ~ ~ij(wj- wi)+ /~--~ (flij- flji)] V anT + flieVlnTe
j ~k i,e LJ # i,e J

(29)

(i # e) (3o)

where D/Dt = O/Ot + u ¯ V. In principle these equations should preserve the identity

~j pjwj -- 0 to within roundoff errors. However, it would be prudent to prevent any possible

accumulation of such errors by enforcing that identity as a constraint by means of a corrective

procedure analogous to Eq. (28), viz.

w, = w° - Zyjwo (31)
J

6.2. Time Differencing

The simplest time differencing scheme that might be used is to simply (a) approximate

all time derivatives dQ/dt by (Qn+l _ Qn)/At’ where Qn is the difference approximation to

Q(t~) and At = t~+a - tn is the time step, and (b) evaluate the remaining quantities in the
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equations as Qn, or preferably Qn+I if the latter has already been calculated.

solution sequence for the present equations would be the following:

A natural

¯ Solve Eqs. (29) and (30), or Eqs. (10) and (11), to obtain +1 oru~+i;

¯ Correct the resulting values of w~+i or u~+i by means of Eq. (31) or (28);

¯ Use the resulting new-time values of w~+1 or u~+l in Eqs. (1) or (3) to solve these

equations and Eq. (5) for p~+i;

¯ Evaluate the additional terms discussed in Sect. 5 above and add their contributions

into the momentum and energy equations for the mixture as a whole.

This scheme would of course be first-order accurate in time, but it would be straightforward

to modify it into a two-step’second-order predictor-corrector scheme if desired.

The explicit time differencing of the frictional coupling terms in Eq. (11) or (30)

imposes new stability restrictions on the time step [14], and these restrictions must be in-

corporated into the time step control logic in the code. In some cases these new stability

restrictions may require the use of unacceptably small time steps, but this can be amelio-

rated in the usual way by subcycling. Alternatively, these restrictions can be eliminated by

using an implicit scheme instead [14], but this would require inversion of an N x N matrix

on every zone of the computing mesh, where N is the number of heavy species.

6.3. Space Differencing

A suitable stable upwinding scheme must of course be selected for the convection

terms in Eqs. (1) or (3) and (11) or (30). In Eulerian codes it would be natural to 
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same convective scheme used for the other equations in the code, whereas the choice of a

convection scheme represents a new decision that must be made to implement the present

equations in Lagrangian codes. The corresponding convective Courant stability restrictions

on the time step must of course also be incorporated into the time step control logic.

6.4. Trace Species

All species are not always present at all points in the flow field, so it is necessary

to allow for the fact that some of the species densities at any given point may be zero. In

particular, logic must be included to prevent dividing by pi when it is small or zero. If

Eq. (11) is solved in conservative form, it should yield piui -- 0 in regions where species i 

absent, since such a species can have no momentum. The value of ui is then indeterminate,

but the choice of this indeterminate value should have no physical consequences, and care

must be taken to ensure that this is the case.

6.5. Composite Species

In practical calculations, it will not always be feasible to consider every species present

as a separate species with its own momentum equation. In such situations, it is necessary

to combine or lump together several species into a single composite species. For example,

one may wish to lump together some or all of the isotopes and/or ionization states of a

particular element to obtain a single composite species representing that element. This

discards information about the relative velocities of the species being lumped together, so

these species must be regarded as all having the same velocity. It is then easy to verify

that the resulting composite species obey continuity and momentum equations of the same
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form as those already given for individual species, provided that the coupling coefficients

and charge per unit mass are evaluated as appropriate sums over the species being lumped

together. Specifically, if the composite species i is made up of individual species labeled by a

second index m, so that subscript im refers to individual species m within composite species

i, then the coupling coefficients for the composite species pair ij are given by

and the charge per unit mass of composite species i is given by

q, = Y mq, m (33)
m

where Yim = Pim/Pi is the mass fraction of individual species m within composite species i.
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